

Horizon 2020 European Union funding for Research & Innovation

Rethinking coastal defence and Green-energy Service infrastructures through enHancEd-durAbiLity high-performance cement-based materials

WP6. Modelling long-term durability of UHDC materials and structures

TUD (Leader) Viktor Mechtcherine Partners participating: POLIMI, STRESS, TUD, CSIC

WP objectives

- Modelling the phenomena that drive the extension of service life of R/C structures through the use of UHDCs accordingly with the exposure scenarios addressed in ReSHEALience.
- Calibration and validation of long-term phenomenological models for each combination of UHDC and durability promoters.
- Models for durability performance will consider:
 - Aging phenomena of UHDC modified by functionalising constituents
 - Crack self-sealing/healing in UHDC
 - Life Cycle Assessment (LCA) of new UHDC materials and components

European Commission Horizon 2020 European Union funding for Research & Innovation

Viktor Mechtcherine, TUD

WP objectives: Implementation strategy

- Modelling set-up and strategies follow a MODA template (updated MOdelling DAta elements) as recommended by the EMMC (European Materials Modelling Council)
- For the LCA the ILCD Handbook will be followed. The solutions with positive balance be selected.
- Primary data basis: Experimental results from WP 5
- Successive implementation of experimental results from WP 8
- Feed back and forth in WP 3 and WP 8 for updating and completing the DAD (Durability Assessment Design) concept

European Commission

WP timeline: M7 – M46

leader	Year 1									Year 2									Year 3										Year 4														
	1	2	3	4 5	5 6	6 7	7 8	9	10	11	12	13 1	14 1	5 1	6 1	7 18	3 1	9 2	0 2	1 22	23	24	25	26	27	28	29 3	0 31	32	33	34	35 3	6	37 3	8 39	9 40	41	42	43	44	45	46 4	48
TUD																																					M5.1				N	15.2	
TUD																											D6	.1															
STRESS																																D6	.1										
TUD																																						D6.1					
TUD																																						D6.2					
PoliMI																																										06.2	
POliMI																	Т																									06.3	

- Tasks 6.1 6.6
- Deliverables 6.1 6.3
- Milestones MS 7 and MS 8

WP effort 101 PM

POLIMI (36), STRESS (15), TUD (30), CSIC (20)

European Commission

WP tasks and partners

- Task 6.1Concept of modified MODA templateM 7 M 30Lead: TUD, partner: POLIMI
- Task 6.2LCA principles and implementationM 12 M 36Lead: STRESS, partners: TUD, POLIMI, CSIC
- Task 6.3Fuzzy-probabilistic data treatment,
transfer in semi-probabilistic formatM 18 M 42Lead: TUD, partners: POLIMI, CSIC
- Task 6.4Implementation of fuzzy-probabilistic and semi-
probabilistic sets of data in modified MODA template
and LCA formalismM 18 M 42
Lead: TUD, partner: POLIMI

European Commission

Example Task 6.3

Example Task 6.3

- Task 6.5Extended formulation of DAD concept,
verification and proof of performanceM 13 M 46Lead: POLIMI, partners: TUD, STRESS
- Task 6.6Delivery to practitionersM 31 M 46Lead: POLIMI, partners: TUD, STRESS

European Commission

Expected interactions within WPs

Input:

- Identification and "importance weighing" of physical and chemical degradation processes from successive outcomes of WP 5 by fuzzy-probabilistic approach
- Processing successive data from WP 8

Output:

- LCA results feed LCC and SLCA in WP 8
- Feed-back and forth with DAD development of WP 3

European Commission

WP milestones

- MS 7 Concepts for LCA and DAD based on modified MODA template developed as the starting point to implement experimental results of UHDCs exposed to EAEs XA and XS from WP 4 and WP 5 Month 40
- MS 8 LCA and DAD based on outcomes of WP 4 and WP 5, transition to verification and proof of performance through experimental results from WP 8 Month 46 → SO 2 and SO 3

European Commission

WP deliverables

- D 6.1 Consolidated modified MODA template and LCA formalism **STRESS**: M 30, updates M 37 and M 42
- D 6.2 Theoretical model to evaluate aging and degradation of UHDC in EAE, and extending the modelling to understand and predict how these actions will affect the service life of structures – **TUD**: M 42 \rightarrow **SO 2**
- D 6.3 New UHDC-tailored DAD concept assessing structure durability and LCA POLIMI and TUD: M 46 → SO 3

European Commission

Coordination in WP 6

- Mailing list with all task leaders and partners
- Coordination meeting to start activities at M 7
- Task Leaders: T 6.1 (TUD), T 6.2 (TUD), T 6.3 (STRESS), T 6.4 (POLIMI), T 6.5 (POLIMI)
- Skype meetings every month: Progress work review and contingencies with respect to interconnected WPs

European Commission

WP6. Modelling long-term durability of UHDC materials and structures

TUD (Leader)

Viktor Mechtcherine

Partners participating: POLIMI, STRESS, TUD, CSIC

Viktor Mechtcherine, TUD

European Commission

